Species distribution model for Curtiss’ Loosestrife (*Lythrum curtissii*).
Florida Natural Areas Inventory
p. 1
Figure 3. Partial dependence plots for the 9 environmental variables with the most influence on the model. Each plot shows the effect of the variable on the probability of appropriate habitat with the effects of the other variables removed [3]. Peaks in the line indicate where this variable had the strongest influence on predicting appropriate habitat. The distribution of each category (thin red = BG points, thick blue = PR points) is depicted at the top margin.

Element distribution models map places of similar environmental conditions to the submitted locations (PR points). No model will ever depict sites where a targeted element will occur with certainty, it can only depict locations it interprets as appropriate habitat for the targeted element. SDMs can be used in many ways and the depiction of appropriate habitat should be varied depending on intended use. For targeting field surveys, an SDM may be used to refine the search area; users should always employ additional GIS tools to further direct search efforts. A lower threshold depicting more land area may be appropriate to use in this case. For a more conservative depiction of suitable habitat that shows less land area, a higher threshold may be more appropriate. Different thresholds for this model (full model) are described in Table 3.
Table 3. Thresholds calculated from the final model. For discussions of these different thresholds see [11, 12]. The Value column reports the threshold; EOs indicates the percentage (number in brackets) of EOs within which at least one point was predicted as suitable habitat; Polys indicates the percentage (number) of polygons within which at least one point was predicted as having suitable habitat; Pts indicates the percentage of PR points predicted having suitable habitat. Total numbers of EOs, polygons, and PR points used in the final model are reported in Table 1.

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Value</th>
<th>EOs</th>
<th>Polys</th>
<th>Pts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equal sensitivity and specificity</td>
<td>0.751</td>
<td>100(65)</td>
<td>100(73)</td>
<td>99.9</td>
<td>The probability at which the absolute value of the difference between sensitivity and specificity is minimized.</td>
</tr>
<tr>
<td>Maximum of sensitivity plus specificity</td>
<td>0.750</td>
<td>100(65)</td>
<td>100(73)</td>
<td>100</td>
<td>The probability at which the sum of sensitivity and specificity is maximized.</td>
</tr>
<tr>
<td>Minimum Training Presence</td>
<td>0.750</td>
<td>100(65)</td>
<td>100(73)</td>
<td>100</td>
<td>The highest probability value at which 100% of input presence points remain classified as suitable habitat.</td>
</tr>
<tr>
<td>Minimum Training Presence by Polygon</td>
<td>0.976</td>
<td>100(65)</td>
<td>100(73)</td>
<td>68.5</td>
<td>The highest probability value at which 100% of input polygons have at least one presence point classified as suitable habitat.</td>
</tr>
<tr>
<td>Minimum Training Presence by Element Occurrence</td>
<td>0.976</td>
<td>100(65)</td>
<td>100(73)</td>
<td>68.5</td>
<td>The highest probability value at which 100% of input EOs have at least one presence point classified as suitable habitat.</td>
</tr>
<tr>
<td>Tenth percentile of training presence</td>
<td>0.947</td>
<td>100(65)</td>
<td>100(73)</td>
<td>89.9</td>
<td>The probability at which 90% of the input presence points are classified as suitable habitat.</td>
</tr>
<tr>
<td>F-measure with alpha set to 0.01</td>
<td>0.750</td>
<td>100(65)</td>
<td>100(73)</td>
<td>100</td>
<td>The probability value at which the harmonic mean of precision and recall, with strong weighting towards recall, is maximized.</td>
</tr>
</tbody>
</table>
Figure 5. A generalized view of the model predictions throughout the study area. State boundaries are shown in gray. The study area is outlined in red.
This distribution model would not have been possible without data sharing among organizations. The following organizations provided data:

- Florida Natural Areas Inventory
- Georgia Department of Natural Resources, Wildlife Resources Division

This model was built using a methodology developed through collaboration among the Florida Natural Areas Inventory, New York Natural Heritage Program, Pennsylvania Natural Heritage Program, and Virginia Natural Heritage Program. It is one of a suite of distribution models developed using the same methods, the same scripts, and the same environmental data sets. Our goal was to be consistent and transparent in our methodology, validation, and output. This work was supported by the US Fish and Wildlife Service, and the South Atlantic Landscape Conservation Cooperative.

Please cite this document and its associated SDM as:
Florida Natural Areas Inventory. 2017. Species distribution model for Curtiss’ Loosestrife (Lythrum curtissii). Created on 13 Sep 2017. Florida Natural Areas Inventory, Tallahassee, FL.

References